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Abstract
Purpose: The purpose of this in vitro study was to evaluate the effect of low-fluence ar-
gon laser (AL) irradiation and acidulated phosphate fluoride (APF) gel treatment on
enamel microhardness.
Methods: Twelve mandibular permanent molars were selected for this study. The teeth
were sectioned generating 4 flat enamel surfaces per tooth. The flattened enamel tooth
surfaces were randomly assigned to 1 of 4 treatment groups: (1) no treatment (control);
(2) the enamel surface was exposed to a 4-minute, 1.23% APF gel treatment; (3) the
enamel surface was exposed to AL irradiation of 11.5 J/cm2 (0.231-W, 5-mm beam size,
10 seconds); and (4) the enamel surface was exposed to the same AL irradiation followed
by an APF gel treatment. Using a Buehler Micromet II Digital Microhardness Tester,
Knoop hardness was determined using a 1,000-gram load and a dwell time of 12 sec-
onds. Five hardness values were recorded for each enamel surface. Data were analyzed
using ANOVA and Fisher’s least significant difference post-hoc test.
Results: Mean surface hardness values (±SD) were 298±37 Knoop hardness (HK) for the
no treatment (control), 270±70 HK for the APF-only group, 316±25 HK for the AL-only
group, and 317±25 HK for the AL-before-APF group. The AL-only and AL-before-APF
groups had significantly higher (P<.05) surface hardness values vs the APF-only group.
Conclusions: Enamel surface microhardness is higher when exposed to low AL irradia-
tion only or AL before APF vs a no treatment (control) enamel surface. (Pediatr Dent.
2003;25:497-500)
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Enamel surface microhardness refers to a tooth’s re-
sistance to scratching, abrasion, and indentation.
The physical-mechanical effects of Nd:YAG laser

irradiation on sound enamel has been reported to in-
crease surface microhardness and modification of the
membrane permselectivity of the enamel.1 These results
are suggested to be connected with the fusion of the
enamel surface. In another study, the microhardness of
a Nd:YAG laser-irradiated enamel surface was shown to
decrease significantly when subjected to higher energy
irradiation settings.2

Previous in vitro3-8 and in vivo9-11 investigations have
shown that the surface of enamel, when exposed to low-
fluence argon laser (AL) irradiation for a short period of

time, exhibits a surface that has been enhanced in caries
resistance. An even more protective effect of enhancing the
resistance of sound enamel to an in vitro cariogenic chal-
lenge has been shown when topical fluoride agents have
been added to the protocol.12-15

It has been stated that the ionic loss of enamel during
demineralization may be interfered with when a tooth is
restored with fluoride-releasing dental materials.16 Two in
vitro studies, where AL polymerization of a fluoride-releas-
ing pit and fissure sealant, provided a greater degree of
protection against an artificial cariogenic challenge and
resulted in significant reductions in primary surface lesion
depth and frequency of wall lesions when compared with
visible light polymerization.17,18
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The purpose of this in vitro laboratory study was to
evaluate the effect of low-fluence AL irradiation and acidu-
lated phosphate fluoride (APF) gel treatment on enamel
surface microhardness.

Methods
Twelve extracted human mandibular permanent molars
with macroscopically sound enamel surfaces were selected
for this in vitro study. The teeth were first sectioned oc-
clusal-gingivally, using a Silverstone-Taylor Hard Tissue
Macrotome to establish flattened and parallel buccal and
lingual enamel surfaces. A second occlusal-gingival cut
through the middle of the tooth in a buccal to lingual di-
rection divided the specimens into tooth halves. The
flattened, lingual enamel tooth surface halves from each
specimen were smoothed with a fine polishing disk and
then randomly assigned to 1 of 4 treatment groups:

1. No treatment–one tooth-half served as the control.
2. APF only–the no-treatment tooth half surface was

then exposed to a 4-minute, 1.23% APF gel (Oral-B
Laboratories, Belmont, Calif) treatment.

3. AL only–the other tooth-half served as the surface ex-
posed with low-fluence AL irradiation of 11.5 joules/
cm2 (0.231-W, 5-mm beam size, 10 seconds).

4. AL followed by APF–the AL-only tooth half surface
was then exposed to a 4-minute, 1.23% APF gel
treatment.

All tooth specimens were stored in deionized-distilled
water prior to treatment.

A Buehler Micromet II Digital Microhardness Tester
(Buehler Ltd, Lake Bluff, Ill) was the microhardness tester
used in this laboratory study. This instrument is designed
for rapid microhardness tests of all types and shapes of me-
tallic and nonmetallic materials. A diamond indentor
provides diagonal measurements of the indentations and
resultant hardness values. A HGM, Inc. (Model 8, Medi-
cal Laser Systems, Salt Lake City, Utah) AL with a
stationary bare fiber and a 5-mm beam spot size delivered
the irradiation to the enamel surfaces.

The flattened buccal surface of the specimen was placed
on the microhardness tester’s stage so that the lingual enamel
surface of the tooth-half to be tested was perpendicular to the
diamond indentor. Each lingual enamel surface of the 12
specimens for the 4 treatment groups was subjected to hard-
ness indentations made with the Knoop hardness tester using
a 1,000-gram load and a dwell time of 12 seconds. The
fluoride gel (APF only) treated and indented surface hard-
ness values were completed directly after the no treatment
(control) surface hardness values were recorded. In a simi-
lar manner, the fluoride gel treated and previously AL (AL
followed by APF) irradiated and indented surface hardness
values were completed directly after the argon laser (AL
only) irradiated surface hardness values were recorded. All
indented surface hardness values were recorded by the same
investigator.

For each specimen, 5 Knoop hardness values (hardness
values in HK) were recorded. Mean hardness values were
than calculated for each of the lingual enamel surfaces.
Because of the research design, the surface microhardness
values for the no treatment (control) and experimental
groups were subjected to analysis of variance (ANOVA)
and Fisher’s least significant difference post-hoc test,
thereby limiting tooth-to-tooth variation in the statisti-
cal evaluation. A significance alpha level of P<.05 was
considered to be acceptable for discriminating differences
between groups.

Results
The trend for enamel surface microhardness was lower af-
ter exposure to a topical fluoride (APF) treatment (270 HK)
when compared to the no treatment (control) group (298
HK; Figure 1). Enamel surface exposed to a low-fluence
argon laser (AL) irradiation alone (316 HK) or in combi-
nation with a topical fluoride (APF) treatment (317 HK)
resulted in higher microhardness when compared to the no
treatment (control) group (298 HK). The enamel surface
microhardness is significantly higher (P<.05) when exposed
to low-fluence argon laser (AL) irradiation alone or in com-
bination with a topical fluoride (APF) treatment vs the
topical fluoride (APF) treatment alone.

The enamel surface microhardness decreased by 9% for
the APF-only treated group when compared to the no treat-
ment (control) group (Figure 1). A 15% increase in
hardness occurred for both the AL-only and AL-before-
APF groups when compared to the APF-only treated group.
In a similar result, the AL-only and AL-before-APF groups
had a 6% increase in hardness vs the no treatment (con-
trol) group. There was a 0% increase in hardness between
the AL-only and AL-before-APF group.

Discussion
The results of increased enamel surface hardness, when ex-
posed to low-fluence AL irradiation alone or in combination
with APF gel treatment, are encouraging and may contrib-
ute to the prevention of dental caries. Several in vitro3-8,10,12-14

Figure 1. Mean enamel surface microhardness values.
* Significant difference (P<.05, ANOVA, Fisher’s least significant
difference post-hoc test) for APF only vs AL only and AL before APF.

Surface hardness
(Mean ± SD)

APF only 270±70 HK

No treatment (control) 298±37 HK

AL only 316±25 HK*

AL before APF 317±25 HK*
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and in vivo9-11 studies have consistently demonstrated the
ability of low-fluence AL irradiation to effectively reduce
caries initiation and progression. Several possible mecha-
nisms have been proposed for irradiation-induced caries
resistance.6,12,17-24 These include:

1. reduction in hydroxyapatite lattice strain and de-
creased solubility due to alteration in carbonate, water,
and organic content of tooth mineral phases;

2. creation of a microseive or micropore system with the
mineral substance of enamel, dentin, and cementum,
allowing for reprecipitation or entrapment of mobi-
lized calcium, phosphate, and fluoride during
demineralization;

3. reduction in mineral structure permeability second-
ary to protein denaturation and protein swelling,
leading to reduction in microporosites;

4. increased uptake to fluoride, calcium, and phosphate
from exogenous sources;

5. creation of surface coatings acting as reservoirs for cal-
cium, phosphate, and fluoride;

6. bacteriostatic or bacteriocidal effect on plaque micro-
organisms (only at high levels).

It is highly unlikely that the results from this study have
much bearing on the clinical situation with respect to the ef-
fect of APF softening of enamel following an APF gel
treatment. In the clinical situation, there is rapid surface
enamel remineralization and incorporation of fluoride and
calcium phosphate from the surface coating created by the APF
gel treatment. Hence, a limitation to this study is the fact that
a synthetic saliva rinsing of the specimens was not performed.
This may have assisted to determine if the differences in
microhardness were due to the APF gel alone, AL irradiation
alone, or the AL irradiation in combination with the APF gel.

The real message of this study is that AL irradiation re-
sults in a significant increase in enamel microhardness in the
absence of an APF gel treatment. The fact that the addition
of APF gel treatment after AL irradiation did not result in a
decrease in microhardness attests to the durability of laser-
induced hardening of the enamel surface. One might expect
that, with APF gel treatment after AL irradiation, the enamel
surface would undergo softening due to the acidic nature of
the APF gel, especially with an exposure time of 4 minutes.
There was effectively no change in the microhardness with
the AL irradiation alone or argon laser irradiation followed
by the APF gel treatment. This implies that AL irradiation
is responsible for microhardness whereas APF gel treatment
improves resistance to caries by providing calcium, phos-
phate, and fluoride coatings that may be incorporated into
enamel surfaces prior to or during initiation or progression
of in vitro or in vivo caries.

Conclusions
Enamel surface microhardness is higher when exposed to
low-fluence AL irradiation alone or in combination with APF
gel treatment vs a no treatment (control) enamel surface.
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The aim of this in vitro study is to compare the effect of milk and low-dose fluoridated milk on enamel
demineralization combining polarization light microscopy, scanning electron microscopy, and EDX ele-
ment analysis to detect morphological features and the element content of experimental caries-like lesions
after medium-term exposure to whole milk and fluoridated milk. Twelve extracted impacted human third
molars were covered in wax, leaving two 3 mm × 3 mm windows on the buccal and lingual surfaces and
then incubated alternating in demineralizing solution and in milk, F-milk, saline, and remineralizing solu-
tion, respectively. Serial ground sections were cut and analyzed by polarization light microscopy and SEM
using EDX element analysis. The results showed increased thickness of the superficial layer in the F-milk
samples, and quantitative element analysis revealed a significant increase in the fluoride content of the su-
perficial layer and of the body of the lesion in the F-milk group, which was less demineralized than in the
other groups. The investigators conclude that the combination of analysis techniques described in this study
is a powerful method to assess caries-like lesion formation. They further conclude that fluoridated milk may
have protective properties in inhibiting demineralization.

 Comments: This article presents a scientific perspective which suggests that milk can be utilized as an
alternative vehicle for fluoride delivery. BB
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